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Abstract

The Global Health Security Initiative (GHSI) established a laboratory network within the GHSI 

community to develop collective surge capacity for radionuclide bioassay in response to a 

radiological or nuclear emergency as a means of enhancing response capability, health outcomes 

and community resilience. GHSI partners conducted an exercise in collaboration with the WHO 

REMPAN (Radiation Emergency Medical Preparedness and Assistance Network) and the IAEA 

RANET (Response and Assistance Network), to test the participating laboratories (18) for their 

capabilities in in vitro assay of biological samples, using a urine sample spiked with multiple high-

risk radionuclides (90Sr, 106Ru, 137Cs, and 239Pu). Laboratories were required to submit their 

reports within 72 hours following receipt of the sample, using a pre-formatted template, on the 

procedures, methods and techniques used to identify and quantify the radionuclides in the sample, 

as well as the bioassay results with a 95% confidence interval. All of the participating laboratories 
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identified and measured all or some of the radionuclides in the sample. However, gaps were 

identified in both the procedures used to assay multiple radionuclides in one sample, as well as in 

the methods or techniques used to assay specific radionuclides in urine. Two third of the 

participating laboratories had difficulties in determining all the radionuclides in the sample. 

Results from this exercise indicate that challenges remain with respect to ensuring that results are 

delivered in a timely, consistent and reliable manner to support medical interventions. Laboratories 

within the networks are encouraged to work together to develop and maintain collective 

capabilities and capacity for emergency bioassay, which is an important component of radiation 

emergency response.
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Introduction

Following a radiological or nuclear emergency, workers, first responders and the public may 

be internally contaminated with the radionuclide(s) involved. Rapid assessment of internal 

contamination, through in vitro or in vivo bioassay, provides timely information for medical 

intervention, if necessary, and provides assurance to those who do not require further 

examination. Accordingly, emergency radionuclide bioassay capacity is essential to support 

emergency response. In a large-scale emergency, it is possible that laboratories from other 

regions or other countries may be called upon for assistance.

The Global Health Security Initiative (GHSI) is an informal network of countries formed in 

2001 to ensure health-sector exchange and coordination of practices in confronting risks to 

global health posed by chemical, biological and radio-nuclear threats, as well as by 

pandemic influenza(1). The member countries/organizations of the GHSI are Canada, 

France, Germany, Italy, Japan, Mexico, the United Kingdom, the United States and the 

European Commission. The World Health Organization (WHO) is a technical advisor to the 

GHSI. As part of the GHSI partnership, an annual meeting of Health Ministers is held to 

foster dialogue on topical policy issues and promote collaboration. Other initiatives 

involving senior health officials as well as policy, technical and scientific personnel take 

place on a regular basis, focused on risk management; communications; chemical events; 

radio-nuclear threats; pandemic influenza; and global laboratory cooperation.

The GHSI Radio-Nuclear Threats Working Group (RNWG) was created to facilitate sharing 

and collaboration on policies and capability development to enhance public health 

preparedness and response to radiological and nuclear threats. As a result of discussions and 

consultations, the RNWG established an informal laboratory network to improve collective 

capabilities and capacity for radionuclide bioassay within the GHSI community. Within this 

network, laboratories can share their expertise through training activities, exercise their 

preparedness through intercomparisons, develop new capabilities through collaborative 

R&D, and assist in bioassay analysis when additional laboratories are required following an 

emergency.
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In 2013, the network laboratories were surveyed on their current capabilities in emergency 

radionuclide bioassay and the technological and operational gaps they had identified in this 

area. Based on the survey results, the RNWG decided to conduct two exercises. The first 

exercise was organized in 2014 to test the participating laboratories for their response 

capabilities in assaying a single radionuclide (241Am) in a urine sample, performing internal 

dose assessment, and providing advice on medical intervention when necessary. Results for 

the first exercise have been published (2).

The second exercise, organized in early 2016 and reported in this paper, is to test the 

participating laboratories (18) for their response capabilities in assaying multiple 

radionuclides in a single urine sample, focusing on the procedures and methods/techniques 

used and the results obtained by the participating laboratories. This exercise was in 

collaboration with the WHO REMPAN (Radiation Emergency Medical Preparedness and 

Assistance Network, World Health Organization) (3) and the IAEA RANET (Response and 

Assistance Network, International Atomic Energy Agency) (4). Some laboratories from the 

REMPAN collaborating centers and liaison institutions and the ones that had registered their 

bioassay capabilities in the RANET database participated in this exercise, together with 

laboratories in the GHSI network.

Methods and Materials

Exercise Design

A scenario (unspecified) based on a severe nuclear power plant accident was adopted, with a 

simplified selection of radionuclides for the purpose of this exercise. The four selected 

radionuclides (90Sr, 106Ru, 137Cs and 239Pu) represent significant dose contributors 

potentially released from a nuclear power plant accident; they also serve as good candidates 

to test the participating laboratories on their bioassay capabilities for mixed α, β, and γ 
emitters. The activity ratios of the four radionuclides (106Ru: 137Cs: 90Sr: 239Pu = 1: 1.16: 

0.137: 1.78 × 10−4) are referenced to the source term of the Chernobyl accident (5) although 

in another accident these may be very different as a result of many factors, such as the 

design of the reactor and the technologies used to reduce the source term. The ratios of these 

radionuclides in the intake by an individual would also be very different as the dispersion 

and deposition of these radionuclides may be controlled by different parameters. 

Nevertheless, these ratios were used as a reference when selecting the intake activities of the 

radionuclides in this project.

NCRP 161 (6) introduces a new operational quantity, the Clinical Decision Guide (CDG), for 

physicians to consider the need for medical treatment of internal contamination. The CDG 

value is the intake of a radionuclide that satisfies both the stochastic health effect criterion (a 

50 y committed effective dose (CED) of 0.25 Sv for adults) and the deterministic health 

effect criterion (the 30 d RBE-weighted absorbed dose values of 0.25 Gy-Eq to bone marrow 

or 1 Gy-Eq to the lungs, for adults). For the four radionuclides considered in this project, the 

stochastic health effect criterion applies. NCRP 161 further recommends that for inhalation 

exposure, a particle size of 5 μm AMAD (activity median aerodynamic diameter) may be 

used in the derivation of the CDGs as it is judged to be a reasonable default particle size 

because intakes of clinical significance are more likely to occur near the point of release 
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where the sizes of airborne particles are usually the largest and the concentrations of 

airborne radionuclides are usually highest (6).

Among the four radionuclides, 106Ru would give the highest CED if the release scenario was 

the same as the Chernobyl accident. For a CED of 0.25 Sv, using the default inhalation 

solubility (type M) for 106Ru according to ICRP 71(7) and calculating the intake and 

bioassay quantities using IMBA Plus® (version 4.0.36, provided by ACJ & Associates, Inc., 

129 Patton Street, Richland, WA, USA), the calculated intake is 1.50 × 107 Bq and the 

calculated urine excretion on Day 7 is 1.46 × 104 Bq (or 2.28 × 103 Bq in 250 mL, using 

default daily urine excretion of 1.6 L recommended by ICRP). Based on the intake activity 

of 106Ru and the source term ratios discussed above, the calculated intakes for 137Cs (type 

F), 90Sr (Type M) and 239Pu (Type M) are 1.74 × 107 Bq, 2.06 × 106 Bq and 2.67 × 103 Bq, 

respectively. Urine excretions on Day 7 for these three radionuclides would be 6.64 × 104 Bq 

(or 1.04 × 104 Bq in 250 mL), 2.89 × 103 Bq (or 4.52 × 102 Bq in 250 mL), and 65.1 mBq 

(or 10.2 mBq in 250 mL), respectively. Table 1 lists the activities (Bq) spiked in a 250 mL 

urine sample provided to each participating laboratory and their concentrations (Bq/L). The 

spiked activities are corresponding to about 1% of the above calculated activities 

for 137Cs, 90Sr and 106Ru, and about 100% of that for 239Pu in a 250 mL urine sample 

collected on Day 7 following exposure, taking into consideration both the objectives of this 

exercise and the technical challenges in assaying each radionuclide.

Sample Preparation and Distribution

Blank urine was collected from healthy unexposed individuals, pooled, preserved with 1% 

HCl, and spiked with the four radionuclides: 90Sr (SRM 4919I, NIST, Gaithersburg, MD, 

USA), 106Ru and 239Pu (Lot 1847-55-1 and Lot 1443-58-2, respectively, Eckert Ziegler 

Isotope Products, Valencia, CA, USA), and 137Cs (Lot S0/35/57, Amersham Laboratories, 

Buckinghamshire, UK), following the standard procedure of the National Calibration 

Reference Center for Bioassay and In Vivo Monitoring, Health Canada, which is certified to 

the International Organization for Standardization (ISO) 9001:2008 standard (8). The spiked 

urine sample was then divided into 250 mL aliquots; one was sent to each participating 

laboratory by a commercial courier without freezing. Laboratories were required to report 

results within 72 hours following receipt of the sample. The 250 mL sample size was chosen 

to enable all of the laboratories to use their existing analytical methods, however, in an 

emergency situation, a laboratory would only expect to receive about 30 to 100 mL of urine 

on average based on past public health emergency responses (CDC personal 

communication).

Results and Discussions

Response to Reporting Schedule

A message was sent to the participating laboratories immediately after the samples were 

picked up by the courier. The majority of the laboratories received the samples within three 

days. A small number of them experienced a short delay mainly due to customs clearance. 

One laboratory ultimately withdrew from this exercise after discovering that customs 

clearance would take up to a month.
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Overall, 15 of the participating laboratories submitted their reports within 72 hours of 

receiving the sample (the required reporting schedule). Three laboratories started late as a 

result of a scheduling conflict with other work commitments or instrument breakdown, but 

submitted their reports within 72 hours. Considering the fact that the radionuclides in the 

sample are unknown to the participating laboratories, identification and quantification of 

different radionuclides require different methods and techniques, and the measurement of 

radionuclides at low levels takes time, reporting the results within the required reporting 

schedule of 72 hours is acceptable. However, it is worthwhile to note that during a real 

emergency, when faced with hundreds to thousands of samples, laboratories are expected to 

have very short turnaround time for sample analysis and reporting so to support decisions on 

medical intervention.

Reported Procedures for Screening the Sample

The laboratories did not know what radionuclides were spiked in the sample, or the activity 

levels. The participating laboratories were only notified that the urine sample simulates a 

collection from an individual who was contaminated during a severe nuclear power plant 

accident and that the selection of radionuclides was simplified for the purpose of this 

exercise.

Screening the sample using available instrumentation and procedures before assaying 

specific radionuclides can help identify certain radionuclides in the sample, for example, if 

beta/alpha emitters are present, or even provide qualitative evaluation on the activity levels 

of certain radionuclides, depending on the instrumentation and procedures used. Eleven out 

of the 18 participating laboratories screened the samples before performing assays for 

specific radionuclides. All of them screened using gamma spectrometry using the whole or a 

fraction of the sample received (L02, L03, L05, L06, L08, L09, L10, L13, L17, L18, and 

L19), while four of them (L02, L03, L09, and L10) also screened for gross beta/alpha using 

liquid scintillation counting. Results from such screening can help in selecting the methods/

techniques for assaying specific radionuclides, determining the size of sub-samples for 

different analyses, and allocating the time for sample preparation and measurements.

Reported Methods and Techniques for Assaying Individual Radionuclides

Splitting the sample received (250 mL) into sub-samples for the assays of different 

radionuclides using different methods/techniques is the common approach of many 

participating laboratories. This allows the assays for different radionuclides to be carried out 

at the same time and ultimately helps reduce the sample turnaround time.

High resolution gamma spectrometry was used for assaying both 137Cs (photon peak of 662 

keV for 137mBa) and 106Ru (photon peak of 622 keV for 106Rh) in the sample by 15 out of 

the 18 participating laboratories, with the volume of sub-sample varying from 10 mL to 250 

mL and the counting time varying from 15 min to 64 hours. All 15 laboratories identified 

and quantified 137Cs in the sample, but three of them missed 106Ru. This was mainly caused 

by the small volume of sub-sample and/or the short counting time used, as the photon peak 

area of 106Rh (representing 106Ru) is much smaller than that of 137Cs. A larger volume 

and/or longer counting time would improve the identification and quantification of 106Ru in 
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the sample. However, during a real emergency, the available volume of a sample may be 

small and the counting time may have to be short.

Assaying 90Sr in the sample might be the most challenging task of this exercise. Only half of 

the 18 participating laboratories reported results for 90Sr. Unless chemical separation is 

applied, direct assay using typical liquid scintillation counting would not tell the presence 

of 90Sr (or its daughter 90Y) in the sample as there are two other beta emitting radionuclides 

in the sample, 106Ru and 137Cs, whose activities are higher by a factor 4 and 20, 

respectively. Comparing the measurements for gamma activities and gross beta activities in 

the sample, especially when the counting time is short, would not help in identifying a pure 

beta emitter, in this case 90Sr, as its activity is very low compared to that of other 

radionuclides. This was demonstrated by one laboratory. In this exercise, the responding 

laboratories separated 90Sr or its daughter 90Y from an aliquot of the urine sample following 

chemical treatments involving precipitation, digestion and separation using ion exchange, 

ion chromatography or extraction chromatography. 90Sr was quantified either by measuring 

itself or the ingrowth of its daughter, 90Y, using liquid scintillation counting, gas flow 

proportional counting, or Čherenkov counting.

Thirteen participating laboratories reported results for 239Pu with one of them reporting a 

level of less than the detection limit of the method used (70 mBq/L). The measurement 

of 239Pu in the sample was made either using inductively coupled plasma mass spectrometry 

(ICP-MS, L02) or using alpha spectrometry (the other 12 laboratories) following extensive 

sample preparation, which involves adding tracers to the sub-sample, precipitating the 

analyte using calcium (and magnesium for one laboratory) phosphate, decomposing the 

precipitate using HNO3 (and H2O2 in some laboratories) with or without a microwave 

system, separating the analyte using anion exchange chromatography and/or solid phase 

extraction chromatography, preparing the source using lanthanide fluoride micro-

precipitation or electrodeposition on stainless steel discs, and counting the source using 

alpha spectrometry. The volume of the sub-sample and the counting time used for the 

measurement of 239Pu in the sample varied significantly among the laboratories, which 

resulted in a wide range of detection limits and measurement accuracy.

As described above, the measurements of 239Pu and 90Sr in the sample involved chemical 

separation steps. Tracers, such as 242Pu for 239Pu, and carrier, such as stable strontium 

for 90Sr, were used by many of the participating laboratories. The use of tracer or carrier 

allows the monitoring of chemical recoveries and correction of the final assay results.

Five laboratories applied procedures for sequential separation of the radionuclides in the 

sample, using either an ion exchange column (L05, L08, L09) or a stack of solid phase 

extraction columns (L06, L12). A procedure with sequential separation capability allows the 

separation of multiple radionuclides in one sample, avoids splitting the sample for the assays 

of different radionuclides, saves time in sample preparation, and improves the quality of 

assay results.

ICP-MS is a rapidly growing technique for the measurement of trace elements. It has been 

applied to the measurements of radionuclides in human and environmental samples thanks to 
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its super sensitivity. As demonstrated by one laboratory (L02), 239Pu in the urine sample can 

be quantified using only 1 mL of the sample, by ICP-MS in conjunction with solid phase 

extraction and an efficient sample introduction system. However, as the concentrations of the 

radionuclides involved in this exercise are very low, without appropriate sample preparation 

(for chemical purification) and specialized sample introduction to ICP-MS for enhanced ion 

transport efficiency, it would not be possible to measure them using ICP-MS due to 

insufficient limits of detection (L01, L08, L16).

It is worthwhile to note that many laboratories reported their efforts in identifying and 

quantifying many other radionuclides, namely 3H, 14C, 89Sr, 238U, 238Pu, 241Am, 242Cm, 

and 244Cm, which are not involved in this exercise but are very relevant to the scenario 

communicated to the laboratories. In a realistic severe nuclear power plant accident, some of 

them might be present in the bioassay samples collected from the affected individuals.

Reported Bioassay Results

Table 2 and Figures 1–4 present the bioassay results reported by the participating 

laboratories with uncertainties at 95% confidence interval (CI). The reported concentrations 

of the radionuclides in the sample are quite close to the spiked levels (Table 1) in this 

exercise, with a small number of exceptions (e.g. 137Cs reported by L16 and 90Sr reported 

by L09). The reported uncertainties for all of the four radionuclides vary significantly. This 

is caused mainly by the differences in the volume of the sub-sample, assay method or 

technique, and the counting time used by the participating laboratories. The methods used to 

estimate assay uncertainties by the laboratories vary, but most of them follow the established 

methods for uncertainty estimation and propagation, published as national or international 

standards. It is worthwhile to note that there are no published acceptance criteria for 

emergency bioassay. International organizations, such as the ISO (International Organization 

for Standardization), may consider the feasibility of developing such criteria.

As discussed above, 90Sr, 106Ru, 137Cs and 239Pu were selected for this exercise as they 

would be significant dose contributors potentially released from a severe nuclear power plant 

accident and are good candidates to test the participating laboratories on their bioassay 

capabilities for mixed α, β, and γ emitters in one sample. In the stock solutions used to 

spike the urine sample, 90Sr and 90Y, and 106Ru and 106Rh, have reached equilibrium, 

respectively. Three laboratories (L03, L08, and L13) reported results for 106Ru 

as 106Ru/106Rh. Four laboratories (L06, L08, L12, and L13) reported 239Pu as 239,240Pu 

because the energy resolution for alpha spectrometry cannot differentiate the signal 

from 239Pu and that from 240Pu. One laboratory (L13) reported 90Sr as 89,90Sr as the 

chemistry used to extract 90Sr from the urine sample and the measurement using gas flow 

proportional counting could not differentiate the signal of 90Sr from that of 89Sr, another 

important radionuclide from the nuclear fission process.

Gaps Identified for Assaying Multiple Radionuclides in One Sample

Following an RN emergency, source term assessment, environmental monitoring or other 

investigations would inform the key radionuclides released from the incident. However, 

sometimes the radionuclides information may not be immediately available. Laboratories 
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performing bioassay may need to screen the samples to identify the radionuclides involved, 

select the methods/techniques for assaying each of them, determine the sizes of sub-samples 

for different analyses, and allocate time for sample preparation and measurements. In this 

exercise, eight of the participating laboratories did not report their efforts in sample 

screening; they only reported the assays of specific radionuclides in the sample.

Only six of the 19 participating laboratories reported results for all of the four radionuclides. 

The other laboratories reported results for some or none of them. These laboratories may not 

have the methods and techniques to identify and/or quantify all of the radionuclides (α, β, 

and γ emitters); some laboratories may only be equipped with gamma spectrometers while 

some others may only be equipped with ICP-MS.

This exercise reveals that, generally, participating laboratories have the technical capacity to 

assess internal contamination to support effective public health and medical response to a 

nuclear emergency, although for some of them, their capacity is quite limited. To be useful 

in a response, in addition to being accurate, assessments must also be timely and sometimes 

need to be done with a smaller volume of sample (say, 30 to 100 mL). In the event of a 

large-scale emergency that overwhelms national bioassay capacity, delivering a timely result 

will require efficient international coordination among laboratories, including sharing 

samples and delivering results. Although efforts within GHSI, WHO, and IAEA have made 

notable progress towards establishing international laboratory networks to provide surge 

capacity and related assistance to support an emergency response, results from this exercise 

indicate that challenges remain to ensuring that results are delivered in a timely, consistent 

and reliable manner to support medical interventions.

Recommendations

The GHSI Laboratory Network for Emergency Radionuclide Bioassay has been working on 

identifying the gaps and developing capabilities and surge capacity for responding to a 

radiological or nuclear (RN) emergency. This informal laboratory network is complementary 

to the assistance capabilities established through RANET (IAEA) and REMPAN (WHO). It 

is recommended that the three networks further strengthen their collaborations and leverage 

their efforts in developing the global capabilities and capacity for emergency radionuclide 

bioassay, including: (1). Organizing a technical workshop to facilitate exchanges and 

learning among the laboratories; (2). Initiating a laboratory hands-on training program 

among laboratories; (3). Developing a practical plan for coordinating sample sharing and 

analysis, and integrating this plan into national emergency preparedness and response. These 

recommendations are those of the GHSI laboratory network and based on information 

gathered from the two exercises. These recommendations do not represent one particular 

agency.
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Figure 1. 
Distribution of the reported results for 90Sr in the urine sample (the dashed lines indicate the 

spiked level with 95% CI).
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Figure 2. 
Distribution of the reported results for 106Ru in the urine sample (the dashed lines indicate 

the spiked level with 95% CI).
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Figure 3. 
Distribution of the reported results for 137Cs in the urine sample (the dashed lines indicate 

the spiked level with 95% CI). Note that for L16, as the reported result is very different from 

the others, it is presented here as an insert.
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Figure 4. 
Distribution of the reported results for 239Pu in the urine sample (the dashed lines indicate 

the spiked level with 95% CI).
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Table 1

Spiked activities (Bq) of the four radionuclides in a 250 mL sample provided to each participating laboratory 

and their concentration (Bq/L) (95% CI)

Radionuclide 90Sr* 106Ru* 137Cs 239Pu

Activity in a 250 mL sample (Bq) 5.02 ± 0.03 20.1 ± 0.6 100 ± 1 0.00994 ± 0.00003

Concentration (Bq/L) 20.08 ± 0.12 80.4 ± 2.4 400 ± 4 0.03976 ± 0.00012

*90Sr/90Y and 106Ru/106Rh are in equilibrium
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Table 2

Reported bioassay results (95% CI) from the participating laboratories

Lab Code 90Sr (Bq/L) 106Ru (Bq/L) 137Cs (Bq/L) 239Pu (mBq/L)

L01 <LoD*

L02 403 ± 15 42 ± 5

L03 73.3 ± 9.9 392 ± 29 43 ± 8.2

L04 17 ± 1.3 80 ± 8 420 ± 30

L05 20 ± 2 79 ± 7 418 ± 4 47 ± 13

L06 19.6 ± 2.7 410 ± 36 38.7 ± 6.6

L07 81.6 ± 7.6 401 ± 25

L08 83.6 ± 8.4 413 ± 5.6 40.4 ± 8

L09 50 ± 25 70 ± 15 400 ± 62 46 ± 16

L10 19.8 ± 3.3 67 ± 17 351 ± 34 50 ± 36**

L12 17.9 ± 1.3 37 ± 10

L13 20 ± 2 67.6 ± 4.7 364 ± 11 57.2 ± 8.1

L14 78.4 ± 10.2 423 ± 10

L15 427 ± 47

L16 2368 ± 206

L17 7.2 ± 1.6 80 ± 24 388 ± 48 39.2 ± 18

L18 79.5 ± 9.5 413 ± 50 44 ± 15

L19 21.6 ± 13.6 68 ± 28 400 ± 40 39.6 ± 9.2

*
LoD was reported as 70 mBq/L;

**
LoD was reported as 30 mBq/L
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